[feed] Atom [feed] RSS 1.0 [feed] RSS 2.0

The functional attributes of protein hydrolysates from horsegram (Macrotyloma uniflorum).

Vatsala, Sharma and Janani, Ramesh and Monika, Thakur and Sridevi Annapurna, Singh (2024) The functional attributes of protein hydrolysates from horsegram (Macrotyloma uniflorum). International Journal of Food Science and Technology, 59. pp. 8204-8213.

[img] PDF
Int J of Food Sci Tech - 2024 - Sharma - The functional attributes of protein hydrolysates from horsegram Macrotyloma.pdf - Published Version
Restricted to Registered users only

Download (494kB) | Request a copy

Abstract

The functional attributes of enzymatically derived horsegram protein hydrolysates from dehulled horsegram were investigated in this study. Hydrolysates were produced using commercial proteases, namely Alcalase® 2.4L and Protex 6L, at varying degrees of hydrolysis (DH) – specifically, 5%, 8%, and 10%. Maximum DH reached 11% with Alcalase® 2.4L and 11.5% with Protex 6L. Optimal hydrolysis conditions entailed a dehulled horsegram concentration of 2.5% (w/v), an enzyme–substrate ratio (E/S) of 0.001% for Alcalase® 2.4L and 0.002% for Protex 6L, at 55 °C and 60 °C, respectively, for 5 h, maintaining a pH of 7.5. Enhanced solubility was observed across a wide pH range (2–10), with HG-PH exhibiting an increase from 21% to 56%. Analysis of functional properties revealed a significant elevation (P < 0.05) in both water holding and oil holding capacities with increasing DH. Emulsion activity decreased from 0.5 to 0.1 in proportion to DH increase. Conversely, foaming capacity (FC) showed a positive correlation with the hydrolysis extent, rising from 24% to 98%. However, foam stability decreased across all samples, declining from 84% to 12%. These findings underscore the potential of incorporating these hydrolysates into diverse food applications, capitalising on their heightened solubility, water and oil holding capacities, and foam-forming characteristics. The comprehensive array of functional properties exhibited by HG-PH renders it a promising ingredient for integration into food product formulations.

Item Type: Article
Uncontrolled Keywords: Degree of hydrolysis, enzymatic protein hydrolysate, functional properties, Macrotyloma uniflorum
Subjects: 600 Technology > 08 Food technology > 16 Nutritive value > 03 Proteins
600 Technology > 08 Food technology > 22 Legumes-Pulses
Divisions: Lipid Science and Traditional Foods
Protein Chemistry and Technology
Depositing User: Food Sci. & Technol. Information Services
Date Deposited: 11 Nov 2024 09:56
Last Modified: 11 Nov 2024 09:56
URI: http://ir.cftri.res.in/id/eprint/18473

Actions (login required)

View Item View Item